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Abstract

The phenomenon of static lateral torsional buckling of a beam with a narrow rectangular cross-section is well known.

Specifically, a beam is clamped at one of its ends and is subjected to a shear force at its other end which causes deformation

in the principal plane with stiffest resistance to bending. Above a critical value of load, a bifurcation occurs and the beam

twists and experiences out-of-plane deformation which tends to transfer bending to the plane of weakest resistance. Here,

attention is focused on an experimental study of dynamic lateral torsional buckling. In the experiment, a beam is attached

to the shaft of a motor at one of its ends and a relatively large mass is attached to its other end. Rotation of the motor

causes deflection of the beam in its principal plane of stiffest bending resistance. By increasing the excitation frequency

and/or amplitude of oscillation of the motor’s shaft, the shear force applied by the mass on the beam’s end exceeds a

critical value which causes dynamic lateral torsional buckling of the beam. Special techniques have been developed to

produce and measure this phenomenon and the data has been presented in a form that can be used for future validation of

analytical or numerical models.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Lateral torsional buckling of a cantilever beam subjected to a shear force is a well-known phenomena in
static stability theory [1, Section 6.3]. Specifically, when the beam has a rectangular cross-section with its
height h much greater than its width w, the stiffness to bending is much greater when the shear load is directed
in the height direction than when it is directed in the width direction. Furthermore, when the shear load
directed in the height direction reaches a critical value, the resistance to torsion is substantially reduced and
lateral torsional buckling occurs as the beam twists and deforms out-of-plane with a tendency to transfer
bending to the plane of weakest resistance.

Dugundji and Mukhopadhyay [2] studied bending-torsional vibrations of a ribbon. In their experiment the
ribbon was free at one of its ends and the other end was clamped to a translational shaker that excited motion
oriented in the stiffest cross-sectional bending direction. Their experiment and analysis focused on nearly
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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planar vibrations. However, they observed that at large amplitude excitations the beam would experience
snap-through-type buckling.

Cusumano and Moon [3] studied chaotic vibrations of a ribbon. In their experiment the ribbon was free at
one of its ends and the other end was clamped to a translational shaker that excited motion oriented in the
weakest cross-sectional bending direction. Wedge-shaped boundaries near multiples of the natural frequencies
of the ribbon where determined within which chaotic response was observed [3, Fig. 5]. Also, a somewhat
stable symmetry-breaking steady state period-two subharmonic solution was observed near the third natural
frequency.

In the experiments of Dugundji and Mukhopadhyay [2], the length L of the ribbon was not that long
relative to its height h (L=h ¼ 8) and its height h was very much greater than its width w (h=w ¼ 150).
Moreover, in the experiments of Cusumano and Moon [3] the length L of the ribbon was long relative to its
height h (L=h ¼ 22:7) and its height h was very much greater than its width w (h=w ¼ 127). In view of this very
tall cross-section it is expected that variations in the height direction may influence the response of the ribbon
for many modes of vibrations. Consequently, beam theory is not adequate to model the complete response of
these plate-like ribbons. In particular, the chaotic response observed by Cusumano and Moon [3] may be
influenced by snap-through behavior of the shallow arch in the height direction caused by anticlastic bending
due to bending in the weakest cross-sectional bending direction of the ribbon.

In this paper, attention is focused on the design of a beam-mass system which exhibits dynamic lateral
torsional post-buckling response. The excitation system is different from that used in either of the experiments
by Dugundji and Mukhopadhyay [2] or by Cusumano and Moon [3]. Here, a beam of length L, with
rectangular cross-section of height h and width w was clamped at one of its ends to the shaft of a motor, and a
rectangular block was clamped at its other end (see Fig. 1). The mass of the block was about 17 times that of
the beam. Also, the dimensions of the beam (L=h ¼ 21:7; h=w ¼ 12) were more consistent with the standard
assumption of beam theory (that variations through the cross-section are nearly linear) than those of the
ribbons used by Dugundji and Mukhopadhyay [2] or by Cusumano and Moon [3]. Moreover, the rotation of
the motor shaft was controlled to be sinusoidal with specified amplitude and frequency and for the in-plane
response this rotation caused a shear force to be applied in the orientation of the stiffest cross-sectional
bending direction. Despite some similarity with previous works, the different geometrical proportions and
boundary conditions, make the phenomena observed in these experiments quite different from those studied
by either Dugundji and Mukhopadhyay [2] or Cusumano and Moon [3]. In particular, the beam-mass system
was designed in this study so that out-of-plane buckling occurs at frequencies which are distinct from the
linear resonance frequencies of the system.
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Fig. 1. Schematic of the experimental setup.



ARTICLE IN PRESS
O. Yogev et al. / Journal of Sound and Vibration 299 (2007) 1049–1073 1051
Due to the large mass of the block, the dynamically induced shear force can exceed the magnitude for static
lateral torsional buckling. For high enough values of this shear force the beam and mass (block) exhibit out-
of-plane motion. Two main nonlinear modes of vibration were observed. One mode was characterized by
bending in the weakest cross-sectional bending direction coupled with torsion of the block with its center of
mass moving out-of-plane. The other mode was characterized by an oscillating rotation of the block with its
center of mass remaining relatively fixed and with the beam experiencing mainly second mode bending in its
weakest cross-sectional plane with some associated torsion. Both modes were quite stable and relatively
periodic. Also, it was observed that these nonlinear deformations occurred when the input forcing amplitude
was almost imperceptible. This later observation is similar to that reported by Cusumano and Moon
[3, p. 194]. Moreover, such behavior makes this phenomenon hard to control in a closed-loop system.

An outline of this paper is as follows. Section 2 and Appendix A discuss a simple model that was used to
design the experimental setup. Since the response of the beam-mass system is nonlinear when buckling occurs
it is quite difficult to accurately measure the bending and torsion of the beam. Consequently, a number of non-
standard measurement techniques are used to retrieve and to analyze the experimental data. Section 3
discusses the response of the system to a continuously swept-sine wave (CHIRP) loading which was used to
identify the natural frequencies of the system and the region of the loading parameters where the buckling
phenomena occurs. Section 4 describes an asynchronous, continuous scanning laser sensor procedure for
accurately measuring torsion and Section 5 describes image processing edge detection methods for measuring
bending and torsion of the beam. Section 6 discusses direct measurements of the natural frequencies of the
system and Section 7 shows that gravity has a significant effect on the system. Finally, Section 8 presents
conclusions.

2. Design of the experimental setup

The experimental setup is shown schematically in Fig. 1. A beam-mass system is attached to the shaft of a
motor which was controlled to oscillate with a sinusoidal rotation angle f(t) with amplitude f0 and frequency
o, such that

fðtÞ ¼ f0 sinðotÞ. (2.1)

A cylindrical steel bar of radius 10mm and length 400mm was attached to the end of the motor shaft as an
extension to allow more freedom of motion for the beam-mass system. This extension bar was supported by
two bearings, each of width 20mm, which were placed at distances 210 and 335mm from the shaft’s end which
was clamped to the beam. This extension bar and the bearings introduced some undesirable flexibility and
damping to the system which will be discussed later.

An encoder measured the rotation angle of the motor’s shaft before its attachment to the extension bar and
a laser sensor was used to measure the velocity tangent to the laser beam of points on the mass. In most of the
experiments the laser beam was fixed in space. However, in some of the experiments the laser beam was
controlled to move in the horizontal plane so that it approximately tracked the motion of the mass, assuming
near rigid body motion of the beam-mass system, or so that it scanned different material points in order to
separate effects of bending and torsion. For the large deformations and torsion angles that occur during
dynamic buckling the laser sensor is not able to track a material point on the mass. Taking into account the
band pass of the motor, the sensitivity of the encoder and the characteristics of the controller, the range of
amplitude f0 and frequency o were limited to

0pf0p2�; 0pop50Hz. (2.2)

Also, in some of the experiments a high speed video camera capable of taking up to 1000 frames/s was used
to obtain a video of the deforming beam-mass system.

The specimen used in these experiments consists of a beam of mass m made from spring steel with a length
L, and rectangular cross-section with height h and width w. One end of the beam was clamped to a block of
stainless steel which was attached to an extension of the shaft of the motor such that the clamping occurred at
a radius R ¼ 30mm from the center of the motor shaft. A steel block of mass M, length B, height H and width
W was clamped to the other end of the beam, such that L was the length of the free section between these two
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clamped boundaries (see Fig. 2). The clamping system was specially designed to ensure maximum clamping,
with the beam being perpendicular to the clamping block and with the mass (block) being properly centered
relative to the beam. The clamping screws were countersunk with minimum gap dimensions so that the
clamped mass (block) was nearly solid. Also, attempts were made to straighten the beam to minimize
perturbations which might cause spurious out-of-plane motion.

The elastic Young’s modulus E of the beam was measured, Poisson’s ratio n was taken from tables in the
literature [4, p. 982], and the yield strength Y (in uniaxial stress) was given by the manufacturer of the spring
steel beam. The values of E and n for the steel mass (block) were taken to be the same as those for the beam.
Also, the masses and dimensions of the beam and mass (block) were measured and their average densities ravg
were calculated. Table 1 summarizes this data and includes the value of the radius R. It is also noted that the
average density of the mass (block) includes the influence of the screws and clamping system.

For small amplitudes and low frequencies the beam and the centroid of the mass remain in the same plane.
Whereas, for other amplitudes and frequencies the centroid of the mass moves out-of-plane as the beam
experiences dynamic lateral torsional buckling. Since the shear force applied by the mass on the end of the
beam depends on both the amplitude f0 and frequency o of excitation, this dynamic buckling can occur at
different values of f0 and o. One objective of these experiments is to find different values of f0 and o where
this phenomena can occur.

As previously mentioned, the specimen was designed so that this buckling occurs at frequencies which are
different from the linear resonance frequencies of the system. This was done as an attempt to ensure that
significant out-of-plane response was due to buckling and not merely coupling with linear modes of vibration.
Also, it is necessary to consider the limitations Eq. (2.2) of the equipment.
2.1. Evaluation of the natural frequencies of the system

A simplified model was developed in order to estimate the natural frequencies of the system. Specifically, the
beam was modeled as a straight, massless Bernoulli–Euler beam with length L, height h and width w. The end
x3 ¼ 0 is clamped and the end x3 ¼ L is attached to a mass such that body triad e0i is oriented in the principal
directions of inertia of the mass, with e03 oriented tangent to the reference curve of the beam (see Fig. 3).
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Fig. 2. Sketch of the beam-mass system.
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Table 1

Measured characteristics of the beam-mass system

Beam Mass (Block)

L (mm) 129.0 B (mm) 30.0

h (mm) 6.0 H (mm) 15.0

w (mm) 0.50 W (mm) 15.0

m (g) 2.9 M (g) 51

ravg (Mg/m3) 7.50 ravg (Mg/m3) 7.50

R (mm) 30.0

E (Gpa) 180

na 0.3

Ya (GPa) 2.0

g (m/s2) 9.81

aThe values of n and Y were determined by tables for steel.

e3

 e1

e'
3

'

�

e1

Fig. 3. Sketch of the simple model.
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Within the context of the linear theory, the deformation of the end x3 ¼ L is characterized by the displacement
vector u(L) and the rotation vector h(L), such that

uðLÞ ¼ uiL ei; hðLÞ ¼ yiL ei,

e01 ¼ e1 þ y3L e2 � y2L e3; e02 ¼ �y3L e1 þ e2 þ y1L e3,

e03 ¼ y2L e1 � y1L e2 þ e3, ð2:3Þ

where ei are fixed rectangular Cartesian base vectors and the usual summation convention is applied over
repeated lower cased indices (no sum is implied over repeated upper cased indices). Appendix A derives
expressions for the force fL and moment mL (about the centroid of the beam’s cross-section) applied by the
mass on the beam at its end x3 ¼ L. Specifically, this derivation yields the expressions:

fL ¼ f iLei; f 1L ¼ K11u1L þ K14y2L; f 2L ¼ K22u2L þ K23y1L,

f 3L ¼ aMgþ
EAu3L

L
,

mL ¼ miLei; m1L ¼ K32u2L þ K33y1L; m2L ¼ K41u1L þ K44y2L,

m3L ¼
B3y3L

L
, ð2:4Þ

where A ¼ hw is the cross-sectional area, B3 is the torsional rigidity Eq. (A.9) and Kij ¼ Kji are constants
which characterize the stiffness coefficients of the beam Eqs. (A.19)–(A.21). Since Kij is symmetric is can be
shown that this force and moment are consistent with an elastic system that admits a strain energy function.
Moreover, the constant a is introduced to consider three orientations of the beam such that the force of gravity
g (per unit mass) acts in the ae3 direction.
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Next, the equations of motion of the rigid mass can be written in the forms

Mac ¼ �fL þ aMge3; _H ¼ �mL þ xb=c � ð�fLÞ, (2.5)

where ac is the absolute acceleration of the center of mass c, H denotes the angular momentum of the mass
(block) about its center of mass, a superposed dot denotes time differentiation, and xb/c denotes the location of
the centroid of the end of the beam relative to the center of mass c,

xb=c ¼ �
B

2
e03. (2.6)

Now, for small deformations the acceleration ac and the angular momentum H can be expressed in the
forms

ac ¼ €uiLei þ €h�
B

2
e03 ¼ €u1L þ

B

2
€y2L

� �
e1 þ €u2L �

B

2
€y1L

� �
e2 þ ½ €u3L�e3,

H ¼ I1 _y1Le1 þ I2 _y2Le2 þ I3 _y3Le3, ð2:7Þ

where the moments of inertia {I1, I2, I3} about the center of mass c are given by

I1 ¼
M

12
ðW 2 þ B2Þ; I2 ¼

M

12
ðH2 þ B2Þ; I3 ¼

M

12
ðH2 þW 2Þ. (2.8)

Thus, with the help of Eqs. (2.4) and (2.7), the equations of motion, i.e. Eq. (2.5) reduce to

M €u1L þ
B

2
€y2L

� �
þ K11u1L þ K14y2L ¼ 0,

M €u2L �
B

2
€y1L

� �
þ K22u2L þ K23y1L ¼ 0,

M½ €u3L� þ
EAu3L

L

� �
¼ 0,

I1 €y1L þ
B

2
K22 þ K32

� �
u2L þ

B

2
ðK23 þ aMgÞ þ K33

� �
y1L ¼ 0,

I2 €y2L þ �
B

2
K11 þ K41

� �
u1L þ �

B

2
ðK14 � aMgÞ þ K44

� �
y2L ¼ 0,

I3 _y3L þ
B3y3L

L

� �
¼ 0, ð2:9Þ

where the effect of gravity it considered to be finite and quadratic expressions in the quantities {y1L, y2L, f1L,
f2L} have been neglected. These equations separate into two sets of coupled equations for the shear and
bending in terms of the variables {u1L, y2L} and {u2L, y1L}, and two uncoupled equations for axial extension
u3L and torsion y3L. For design purposes the effect of gravity was neglected (a ¼ 0) and the eigenvalue
problem associated with Eq. (2.9) gives the natural frequencies and mode shapes recorded in Table 2. From
this table it can be seen that Modes 1–6 characterize, respectively, the first mode of bending in the weak plane,
Table 2

Natural frequencies and mode shapes of the simple Bernoulli–Euler model (ignoring the effect of gravity a ¼ 0)

Mode 1 2 3 4 5 6

Frequency (Hz) 2.45 28.4 41.2 51.1 613 1447

Amplitude of u1L 0 0.08 0 0 �0.016 0

Amplitude of u2L 0.08 0 0 0.016 0 0

Amplitude of u3L 0 0 0 0 0 1

Amplitude of y1L 1 0 0 1 0 0

Amplitude of y2L 0 1 0 0 1 0

Amplitude of y3L 0 0 1 0 0 0
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the first mode of bending in the stiff plane, torsion, the second mode of bending in the weak plane, the second
mode of bending in the stiff plane, and axial extension.
2.2. Estimation of the buckling frequency

Next, it is necessary to estimate the frequency at which dynamic lateral torsional buckling can occur.
Assuming that the beam remains rigid, the magnitude P of the shear force applied by the mass (block) on the
beam can be estimated by using the magnitude of the tangential acceleration of its center of mass to obtain

P ¼Mf0o
2 Rþ Lþ

B

2

� �
. (2.10)

A lower bound for buckling to occur is obtained by equating this magnitude to the magnitude Pcr required
for static buckling [1]

Pcr ¼ 4:0126

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I22EB3

p

L2
. (2.11)

Plastic failure of the beam at its base will occur when the tensile stress reaches the yield stress Y of the beam.
Thus, to eliminate yielding the shear force P must remain below the value Pp given by

Pp ¼
2YI11

hL
. (2.12)

The properties of the beam-mass system given in Table 1 were specified to meet the design criterion. Fig. 4
plots the design curves of P/Pcr and P/Pp versus the frequency for the amplitude f0 ¼ 0:651 and the properties
in Table 1. From this figure it can be seen that buckling will occur above the value of frequency o ¼ 20:4Hz
(associated with P=Pcr ¼ 1) and that plastic failure will not occur (P/Ppo1) in the range of frequencies being
considered.
Fig. 4. Design curves for predicting the onset of buckling and plastic failure for the amplitude f0 ¼ 0:651 and the properties in Table 1.
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2.3. Effect of gravity

As mentioned, the effect of gravity was ignored in designing the specimen. However, once the experimental
setup was built, the accuracy of the simple model Eq. (2.9) was examined. Specifically, the frequency of the
first mode of bending in the weak bending plane was measured to be 2.76Hz which is quite different from the
value of 2.45Hz predicted in Table 2. After rechecking the dimensions of the beam and its mechanical
properties it was realized that gravity has a significant effect on the natural frequency. In particular,
measurements of the first natural frequency in bending were made by positioning the beam in three different
positions: (i) with the mass below the beam’s clamped end (a ¼ 1); (ii) with the beam being horizontal
(approximated by a ¼ 0); and (iii) with the mass above the beam’s clamped end (a ¼ �1). Table 3 shows that
when the effect of gravity is included in the simple theory Eq. (2.9), the predictions of this bending frequency
compare reasonably well with the experimental data. Unless otherwise stated, the experiments reported below
refer to the orientation a ¼ 1 where the mass is located below the beam’s clamped end.

3. Response to a swept-sine loading

In order to study the behavior of the system it is convenient to use a swept-sine (CHIRP) input which is
characterized by constant amplitude and a frequency that increases linearly with time in a specified frequency
range. The digital signal processor (DSP) controlling the motor in the experimental system was programmed
to supply this input. Specifically, the amplitude was set to 0.651 and the frequency range was taken to be
0–40Hz with a sweeping time of 30 s. Use of the CHIRP input in conjunction with a suitable time–frequency
analysis [5] made it relatively easy to identify frequency ranges where dynamic buckling occurs. Moreover,
analysis of the response helped identify that the controller had difficulties maintaining a constant high
amplitude, especially when dynamic buckling occurred. Consequently, the excitation of the beam during
dynamic buckling was not exactly a pure sine function as specified by Eq. (2.1). In this regard, it is also noted
that controlling nonlinear flexible structures to undergo a nearly perfect sinusoidal motion remains a difficult
challenge. A special difficulty of the particular experimental setup used here is that the nonlinear buckling
takes place in a mode that is nearly orthogonal to the small deformation mode caused by rotation of the motor
shaft. Consequently, the controller has limited success in controlling a sinusoidal amplitude of rotation when
buckling occurs.

The CHIRP output signal of the signal processor, the encoder reading of the rotation of the motor shaft,
and the laser sensor reading of the velocity of the mass were recorded during each of the CHIRP experiments.
A continuous Gabor transform, also known as the short-time Fourier transform, was used to construct the
time–frequency distribution (TFD) [6] with which the measured response signals were analyzed. This
distribution analyzes the energy content of the signal as a function of the evolving frequency of excitation.
Figs. 5a,b show the TFD for two periods of loading (each of which starts at zero frequency) of the encoder
readings and the laser sensor measurements in the e2 direction, respectively. These figures give plots of
frequency versus time with intensity indicating the energy level of the specific frequency component. The bold
diagonal lines of the encoder readings in Fig. 5a indicate that the controller causes the motor shaft to follow
the CHIRP input, but due to the strong coupling with the nonlinear dynamics, integer multiples of the
excitation frequency (the other diagonal lines in Fig. 5a) are excited as well. The gaps in the diagonal bold lines
in Fig. 5a indicate that the controller cannot maintain a constant amplitude near an input frequency of about
Table 3

Effect of gravity

a Measured frequency (Hz) Theory frequency (Hz)

1 2.76 2.73

0 2.35 2.45

�1 1.87 2.07

Measured natural frequencies of the first bending mode in the weak bending plane and theoretical predictions of the simple model Eq. (2.9)

for different values of a.
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Fig. 5. Time–frequency distribution response to a CHIRP excitation: (a) encoder readings and (b) laser sensor readings.
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35.0Hz. This is consistent with the experimental observation that dynamic buckling occurred near 35.0Hz
with the mass beginning to twist instead of merely vibrating with the weakest bending mode. Consequently, at
this point most of the vibrational energy has been converted into torsional vibrations around e3 (associated
with dynamic bucking) and the motor torque produces little vibration in the e2 direction. In Fig. 5a it can also
be observed that a surge in the rotational vibration occurs at a frequency of around 40Hz (associated with the
small deformation torsional mode in Table 12). Some of the horizontal lines in the TFD of the laser sensor
readings in Fig. 5b indicate the natural frequencies of the system. The first weak bending mode occurs at about
2.8Hz and the torsional mode occurs at about 40Hz. These results are reasonably close to the predictions of
the simple model (2.9) in Tables 2, 3 and 12. Furthermore, it is instructive to observe the dark regions where
the angular vibrations become high. These points either indicate excitation of natural frequencies by integer
multiples of the CHIRP input or they are a transient artifact.

The CHIRP experiment was conducted with an amplitude of 0.651 and the phenomena of dynamic lateral
torsional buckling was observed at a frequency of 35.0Hz. Additional experiments were conducted to
determine whether the phenomena also occurs at other frequencies and amplitudes. In order to keep the force
exerted by the mass on the beam sufficiently high as the frequency was decreased the amplitude was increased.

Fig. 6 shows three sets of responses for different excitation amplitudes f0 and frequencies o. Three frames
(separated by 4 s each) from a high resolution video are presented for each excitation. With reference to this
figure, the first set of three frames (f0 ¼ 0:651 and o ¼ 35:0Hz) will be called Torsion I, the second set of three
frames (f0 ¼ 1:491 and o ¼ 25:5) will be called Torsion III and the third set of three frames (f0 ¼ 0:651 and
o ¼ 35:0Hz) will be called Bending II. An additional experiment called Torsion II (f0 ¼ 1:501 and
o ¼ 27:0Hz) will be discussed later. For Torsion I dynamic lateral torsional buckling occurs as the beam
remains bent to one side while the mass twists. The response of Torsion III shows that this same buckling
phenomena can be produced at a different excitation amplitude and frequency. Similar buckling phenomena
(like Torsion II) were observed at other amplitudes and frequencies which are not shown. In general, it was
found that the amplitude of the out-of-plane displacement of the mass increases as the excitation amplitude
increases and the frequency decreases. For a fixed amplitude and increasing frequency, it was observed that
oscillations of the mass in the weakest plane of bending of the beam occur for frequencies both below and
above a critical frequency at which the out-of-plane deflection of the mass remains relatively constant.
A similar response is observed when the frequency is fixed and the amplitude is increased. It should be noted
that this pattern of oscillation is stable and persists until the frequency or amplitude are adjusted out of a
certain range. The limits of this range were not explored in detail.

Comparison of Torsion I and Bending II in Fig. 6 indicates that two different modes of oscillation occur at
the same excitation (f0 ¼ 0:651 and o ¼ 35:0Hz). Specifically, in Bending II the mass rotates about its nearly
fixed center of mass as the beam deforms with its second bending mode in its weak-bending plane. A snap-
through-type bending occurs as the beam becomes nearly straight (see the center frame of Bending II). This
mode also persists unless the mass is deflected slightly out-of-plane causing the mode to transition to that
associated with Torsion I in Fig. 6.
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Fig. 6. Three sets of responses (Torsion I, Torsion III and Bending II) for different excitation amplitudes and frequencies.
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4. Laser sensor scanning method for measuring torsion

One of the methods used here for measuring the amplitude and frequency of torsion of the beam employed a
continuous laser scan of the mass. Fig. 7 shows a sketch of this laser sensor scanning method. The laser beam
measures the velocity in the e2 direction of points on the surface of the mass. This velocity component is
influenced by both the translational and rotational motion of the mass as well as by the fact that the laser
beam does not track a specific material point on the mass.

For this method it is assumed that the mass experiences quasi-periodic, two-dimensional motion in the
e1�e2 plane which is dominated by a component with frequency o. The center of the line representing the
surface of the mass moves to the position x0(t) and the line rotates with angle y(t) about the e3 axis. For small
displacements and angles, the dominant part of the new position x of a material point X on this line is given by

xðX ; tÞ ¼ xðX ; tÞe1 þ yðX ; tÞe2 ¼ Xe1 þ x0ðtÞ þ yðtÞXe2,

x0 ¼ X 0 cosðotþ xÞe1 þ Y 0 cosðotþ cÞe2; y ¼ y0 cosðotþ tÞ,

xðX ; tÞ ¼ X þ X 0 cosðotþ xÞ; yðX ; tÞ ¼ Y 0 cosðotþ cÞ þ yðtÞX , ð4:1Þ

where X is the distance of a material point on the line from its center, {X0, Y0, y0} are amplitudes and {x, c, t}
are phase angles. It follows that the velocity v of a material point in the e2 direction is given by

vðX ; tÞ ¼ _yðX ; tÞ ¼ �o½Y 0 sinðotþ cÞ þ y0X sinðotþ tÞ�. (4.2)

This velocity field can also be written in the Eulerian form

vðx; tÞ ¼ �o½Y 0 sinðotþ cÞ þ y0x sinðotþ tÞ�, (4.3)

since the product y0X0 does not affect the laser sensor’s output [7].
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Fig. 7. Sketch of the laser sensor scanning method for measuring torsion.

Fig. 8. Data from one of the tests used to measure the torsion angle: (a) power spectral density (PSD) and (b) comparison of the

measurements with the parametric function for the velocity. The curve labels are: (—) Par.; ( � � � � � ) Exp.
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In order to separate the effects of translation and rotation of the mass, the spatial position of the laser beam
is modulated according to the formula

x ¼ A sinðOtþ dÞ, (4.4)

where O is the scanning frequency, A is the amplitude and d is the phase angle. It therefore follows that the
velocity vL(t) measured by the laser sensor is given by substituting Eq. (4.4) into Eq. (4.3) to obtain

vLðtÞ ¼ �o½Y 0 sinðotþ cÞ þ y0A sinðOtþ dÞ sinðotþ tÞ�. (4.5)

Next, using standard trigonometric relations this expression can be rewritten in the form

vLðtÞ ¼
oy0A
2
½cosfðoþ OÞtþ tþ dg � cosfðo� OÞtþ t� dg� � oY 0 sinðotþ cÞ. (4.6)

It now can be seen from this equation that the angular motion is shifted to two sidebands having the
frequencies o7O, respectively. These sidebands have the same amplitudes (oy0A/2) but different phases (t+d
and t�d, respectively).

A series of tests were conducted at discrete frequencies in the interval 31.0–34.0Hz with steps of 0.5Hz.
Fig. 8a shows the power spectral density (PSD) of the steady-state data taken from one of the tests for which
o ¼ 31, O ¼ 10:0Hz and A ¼ 5mm. The amplitudes of the sidebands in Fig. 8a at o� O ¼ 21 and oþ O ¼
41Hz can be seen to be the same in accordance with the result Eq. (4.6). From Fig. 8a it can also been seen
that integer multiples of the excitation frequency o have sidebands with similar amplitudes.

Next, the method of least squares was used to determine the best values of {y0, Y0, t, d, c} in the expression
Eq. (4.6) which fit the experimental data. Fig. 8b shows that the resulting analytical curve fits the experimental



ARTICLE IN PRESS

Fig. 9. Amplitude of the torsion angle versus excitation frequency. The curve labels are: (–+–) o–O; (–o–) oþO.
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data for velocity quite well. Moreover, using this procedure for the other tests it is possible to determine the
torsion amplitude y0 for the data of both of the main sidebands and the results are presented in Fig. 9. In
particular, it can be seen that the torsion amplitude is a nonlinear function of the excitation frequency.
Moreover, it is noted that this scanning procedure becomes inaccurate for large deformations of the beam-
mass system since the assumption of two-dimensional motion of the mass no longer holds.

5. Image processing method for measuring amplitudes

As mentioned previously, a high speed digital video camera was used to photograph some of the
experiments. Although the camera is capable of taking up to 1000 frames per second (fps), the framing rate
had to be reduced to around 250 fps when using a large opening angle to photograph the entire beam-mass
system.

The video for the Torsion I response shown in Fig. 6 was processed using edge detection methods. Fig. 10
shows a sketch of the analysis of the edges of a cross-section of the beam. Each frame of the videos was rotated
by a fixed angle to ensure that the clamped edge of the beam was vertical so that measurements from the edge
of the rotated picture would be parallel to the e2 axis. The distances {yB, yF} from the edge of the rotated frame
to the back and front edges, respectively, of the beam are measured at the same deformed axial location x3 ¼ z

from the beam’s clamped end. Then, the location y of the centerline of the beam is determined by the
expression

y ¼ 1
2
ðyB þ yF Þ. (5.1)

Due to the camera angle it is not possible to accurately measure displacements in the e1 direction. Moreover,
in obtaining a value for the torsion angle it is necessary to account for the fact that the mass is oriented
at an angle to the vertical. Therefore, for the measurement of the torsion angle each of the frames in the
video was rotated by the same angle (different from that used to measure the centerline) to cause the edges
of the mass to become vertical. Then, the new horizontal distances fȳB; ȳF g from the edge of the rotated
frame to the back and front edges, respectively, of the mass were measured. Using these values and the
fact that the true distance between these edges is H, it is possible to obtain an approximate value y of the
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Fig. 10. Analysis of the edges of the cross-section of the beam.
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torsion angle using the formula

y ¼ sin�1
ȳF � ȳB

H

� �
. (5.2)

Furthermore, since the mass is nearly rigid this angle is considered to be the torsion angle at the beam’s end
attached to the mass.

The data from this edge detection procedure is analyzed using two different methods. The first method uses
a parametric model to curve-fit the time response of the data at a specified axial location. The second method
uses a polynomial function to approximate the spatial shape of the beam at a specified time. Due to the small
differences in the locations of the edges of the beam, the torsion angle in the beam region was too noisy
to be measured accurately. Therefore, only the parametric model is developed for the torsion angle at the
beam’s end attached to the mass, since it relies on a large number of frames to overcome the effects of
quantization due to the coarse image resolution. The inevitable random noise, generates a natural dither in the
quantized measurements thus enabling a statistical improvement of the spatial resolution due to the
parametric approach [8].

In order to determine a parametric model for the motion of the beam from the converted film it is necessary
to first determine an accurate value of the frequency of motion. To this end, the coordinate y of the beam’s
centerline at a specified axial location was recorded to obtain an array of coordinates yi at times ti associated
with M frames. Then, the resulting data was approximated by a Fourier series

yðtÞ ¼
XN

n¼0

½an sinðnotÞ þ bn cosðnotÞ�; a0 ¼ 0, (5.3)

where the (2N þ 2) constants {an, bn, o} are determined by approximating the M equations

yðtiÞ ¼ yi for i ¼ 1; 2; . . . ;M. (5.4)

Since the number of equations M is much larger than the number of unknowns (2N þ 2), the system of
equations is over determined. Here, the system Eq. (5.4) is solved in the least-squares sense. Specifically, a two
stage approach is employed. In stage 1 the frequency o is curve fitted to the constant amplitude excitation
signal. Once o is found, a set of over determined linear equations is solved for {an, bn} using a linear least-
squares approach. This process (with N ¼ 3) was performed for one point on the beam located by its
deformed axial position z and the parametric frequency determined associated with this point was very close to
the excitation frequency o ¼ 35:0Hz specified by the controller.

Next, edge detection was used to quantify the locations of the centerline of a number of points along the axis
of the beam in each frame of the movie. This yields an array of locations yij and times ti and axial locations
z ¼ zj. Parametric functions for the motion at each axial location zj can be expressed in the forms

yjðtÞ ¼
XN

n¼0

½anj sinðnotÞ þ bnj cosðnotÞ�; a0j ¼ 0; (5.5)
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Table 4a

Torsion I—the beam’s centerline: values of the constants in the parametric approximation Eq. (5.5) for o ¼ 35:0Hz and different

deformed axial locations z from the beam’s clamped end

z (mm) b0 (mm) a1 (mm) b1 (mm) a2 (mm) b2 (mm) a3 (mm) b3 (mm)

48 0.62158 0.11661 �0.32507 0.03598 0.026836 0.065451 0.10686

64 �0.79209 0.25296 �0.45071 �0.33912 �0.11817 0.070966 0.28214

80 �2.3806 0.1084 �0.63024 �0.54603 �0.27617 0.08873 0.055645

96 �4.2345 0.065247 �0.75894 �0.62671 �0.45833 0.003012 �0.0441

111 �6.2633 �0.0524 �0.69462 �0.65511 �0.53358 �0.0241 �0.08402

127 �8.9525 �0.15525 �0.51063 �0.50555 �0.4786 �0.02015 �0.11183

Table 4b

Torsion I—the beam’s centerline: values of the constants in the polynomial approximation Eq. (5.7) for different times t

t (ms) d0 (mm) d1 (mm) d2 (mm) d3 (mm) d4 (mm) d5 (mm)

0 0.27737 1.5959 34.062 �161.75 188.65 �73.250

9 0.089548 0.18971 45.692 �183.87 212.42 �83.715

21 �0.09828 �1.2181 57.600 �206.45 236.12 �94.307

Table 5

Torsion I—the torsion angle: values of the constants in the parametric approximation Eq. (5.5) for o ¼ 35:0Hz and the deformed axial

location z ¼ 127mm from the beam’s clamped end

b0 (deg) a1 (deg) b1 (deg) a2 (deg) b2 (deg) a3 (deg) b3 (deg)

0.0305 24.0159 9.7192 4.6552 5.9121 0.0395 0.2202

Table 6a

Torsion II—the beam’s centerline: values of the constants in the parametric approximation Eq. (5.5) for o ¼ 27:0Hz and different

deformed axial locations z from the beam’s clamped end

z (mm) b0 (mm) a1 (mm) b1 (mm) a2 (mm) b2 (mm) a3 (mm) b3 (mm)

40 0.3568 �0.3929 0.2001 0.6557 �0.1011 �0.0269 �0.5943

56 0.5319 �0.5813 0.3756 1.2374 �0.163 �0.0771 �2.8538

72 0.6163 �0.6794 0.4535 1.6064 �0.2516 �0.1311 �5.6742

88 0.5738 �0.6397 0.4195 1.5127 �0.262 �0.1519 �9.2041

104 0.9791 �1.6172 0.0717 0.387 �0.2354 0.0035 �9.0206

Table 6b

Torsion II—the beam’s centerline: values of the constants in the polynomial approximation Eq. (5.7) for different times t

t (ms) d0 (mm) d1 (mm) d2 (mm) d3 (mm) d4 (mm) d5 (mm)

0 0.0775 0.2555 44.6147 �225.992 305.3372 �155.624

12 0.0508 1.7192 32.0918 �235.031 345.1034 �172.248

24 0.024 3.1829 19.5688 �244.07 384.8696 �188.872

O. Yogev et al. / Journal of Sound and Vibration 299 (2007) 1049–10731062
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Table 7

Torsion II-the torsion angle: values of the constants in the parametric approximation Eq. (5.5) for o ¼ 27:0Hz and the deformed axial

location z ¼ 110mm from the beam’s clamped end

z (mm) b0 (deg) a1 (deg) b1 (deg) a2 (deg) b2 (deg) a3 (deg) b3 (deg)

110 12.1283 3.1278 �4.0187 �3.9420 �1.4618 �0.8546 �1.1189

Table 8a

Torsion III—the beam’s centerline: values of the constants in the parametric approximation Eq. (5.5) for o ¼ 25:5Hz and different

deformed axial locations z from the beam’s clamped end

z (mm) b0 (mm) a1 (mm) b1 (mm) a2 (mm) b2 (mm) a3 (mm) b3 (mm)

48 �1.2643 0.4237 0.2413 �0.7374 �0.4377 0.0691 0.0987

64 �3.8979 0.6288 0.3932 �1.1398 �0.7393 0.1448 0.0893

60 �3.2507 0.5747 0.3738 �1.0559 �0.654 0.1003 0.1126

96 �10.766 0.7577 0.4874 �1.314 �0.8899 0.2259 0.1325

111 �15.756 0.8394 �0.6464 �0.0375 �0.2046 0.0584 0.7769

127 �18.328 2.0728 0.8815 0.3841 0.4986 0.2329 0.041

Table 8b

Torsion III—the beam’s centerline: values of the constants in the polynomial approximation Eq. (5.7) for different times t

t (ms) d0 (mm) d1 (mm) d2 (mm) d3 (mm) d4 (mm) d5 (mm)

0 �0.2179 0.7172 47.574 �260.90 335.42 �144.88

13 �0.0008 0.0943 42.380 �234.20 302.56 �133.95

26 0.2164 �0.5287 37.187 �207.51 269.69 �123.01

Table 9

Torsion III—the torsion angle: values of the constants in the parametric approximation Eq. (5.5) for o ¼ 25:5Hz and the deformed axial

location z ¼ 110mm from the beam’s clamped end

z (mm) b0 (deg) a1 (deg) b1 (deg) a2 (deg) b2 (deg) a3 (deg) b3 (deg)

110 7.8284 17.945 11.410 �2.3822 �15.231 0.0634 �2.8656

Table 10a

Bending II—the beam’s centerline: values of the constants in the parametric approximation Eq. (5.5) for o ¼ 35:0Hz and different

deformed axial locations z from the beam’s clamped end

z (mm) b0 (mm) a1 (mm) b1 (mm) a2 (mm) b2 (mm) a3 (mm) b3 (mm)

40 �0.8029 2.3518 3.5554 �0.2561 0.2432 0.0019 0.0136

56 �0.7942 3.5027 5.4184 �0.4112 0.5911 0.0261 0.0326

72 �0.6604 4.1422 6.3819 �0.6577 0.7789 0.0878 0.0864

88 �0.6734 3.85 6.1179 �0.5715 0.9387 �0.1014 0.0458

104 �0.7338 2.9223 4.852 �0.5342 0.8553 �0.1222 0.0817

120 �5.1022 1.9214 2.2739 �0.0763 0.3137 0.2967 0.2282

O. Yogev et al. / Journal of Sound and Vibration 299 (2007) 1049–1073 1063
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Table 10b

Bending II—the beam’s centerline: values of the constants in the polynomial approximation Eq. (5.7) for different times t

t (ms) d0 (mm) d1 (mm) d2 (mm) d3 (mm) d4 (mm) d5 (mm)

0 0.0207 9.7017 �29.631 230.88 �407.20 200.35

7 0.032 6.4900 �46.523 229.50 �361.96 177.38

14 0.0547 0.06756 �79.754 226.27 �271.47 130.17

21 0.066 �3.1452 �96.370 224.42 �226.23 106.17

Table 11

Bending II—the torsion angle: values of the constants in the parametric approximation Eq. (5.5) for o ¼ 35:0Hz and the deformed axial

location z ¼ 127mm from the beam’s clamped end

b0 (deg) a1 (deg) b1 (deg) a2 (deg) b2 (deg) a3 (deg) b3 (deg)

0.0008 �0.9946 �0.7425 �1.7814 �1.2672 0.1097 0.0235
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where o ¼ 35:0Hz and the constants {anj, bnj} need to be determined by approximating the equations

yjðtiÞ ¼ yij : (5.6)

Although different numbers of harmonics could be used for each digitized point, here N was specified to be
the same for all points (N ¼ 3). With the value of o specified, the equations Eq. (5.6) are linear in the constants
{anj, bnj} and they can be solved using a linear least-squares approach.

The parametric function Eq. (5.5) tends to smooth the time response at the axial location zj. Alternatively, it
is possible to use a polynomial expansion in space to smooth the deflection of the beam at each time ti.
Specifically, at each time ti the edge detection data is fitted to the polynomial expansion

yiðzÞ ¼
XP

n¼0

dn

z

L

� �n

; (5.7)

where P denotes the order of the polynomial and the constants dn are determined by using a linear least-
squares approach to solve the over determined system of equations

yiðzjÞ ¼ yij (5.8)

for each time ti. For the analysis below P was set equal to 5. Also, since only the relative values of the location
of the centerline and the torsion angle are of interest, constants have been added to the parametric functions to
produce near zero centerline displacement and zero torsion angle at the beam’s clamped. Furthermore, this
procedure was used to determine a parametric model for the torsion angle y at the beam’s clamped end.

The procedure just described was also applied to the data for Torsion III and Bending II in Fig. 6 as well as
for the additional experiment Torsion II and the results of the analysis are presented in Figs. 11–14 and in
Tables 4–11. Specifically, Fig. 11 presents the results for Torsion I with the bending of the center line given in
Figs. 11a–c and the torsion angle given in Figs. 11d,e. The deformed axial location z ¼ 127mm was used for
both the centerline and the torsion angle which yield the parametric frequencies very close to the excitation
frequency o ¼ 35:0Hz that was used in the parametric functions Eq. (5.3). This axial location represents the
deformed location of the beam’s end which is attached to the mass so its value is different from the
undeformed value z ¼ 129mm. Figs. 11a,d show that the parametric functions fit the measured data
reasonably well. Figs. 11b,e show that the power spectral density of the measured data contains significant
energy content at frequencies which are multiples of the excitation frequency o ¼ 35:0Hz. Fig. 11c compares
the shapes of the beam’s centerline predicted by the parametric functions and the polynomial approximation
Eq. (5.7) at different times. From the results in this figure near the beam’s clamped end it can be seen that the
error in the edge detection method is about70.25mm since this end should not move. Details of the constants
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Fig. 11. Response of Torsion I for the centerline (a, b, c) and the torsion angle (d, e). For the time responses (a, b, d, e, with N ¼ 3) the

deformed axial location is z ¼ 127mm. Also, the spatial shapes (c, with P ¼ 5) are presented for different times. The curve labels are: (a, d)

(–�–) Exp.; (—) Par.; (c) (–o–) 0 (ms); (–�–) 9 (ms); (–+–) 18 (ms).
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in both the parametric and polynomial approximations for Torsion I can be found in Tables 4 and 5. This data
is provided to allow for future validation of analytical or numerical models.

Fig. 12 and Tables 6 and 7 analyze the Torsion II response and Fig. 13 and Tables 8 and 9 analyze the
Torsion III response. For each of the experiments Torsions II and III use was made of the deformed axial
location z ¼ 110mm of the beam’s end for both the centerline and the torsion angle which again yield
parametric frequencies very close to the excitation frequencies o ¼ 27:0Hz for Torsion II and o ¼ 25:5Hz for
Torsion III that were used in the parametric functions Eq. (5.3). The main difference between the responses of
Torsions I–III is that the amplitudes increase as the excitation frequency decreases. In addition, it should be
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Fig. 12. Response of Torsion II for the centerline (a, b, c) and the torsion angle (d, e). For the time responses (a, b, d, e, with N ¼ 3) the

deformed axial location is z ¼ 110mm. Also, the spatial shapes (c, with P ¼ 6) are presented for different times. The curve labels are: (a, d)

(–�–) Exp.; (—) Par.; (c) (–o–) 0 (ms); (–�–) 12 (ms); (–+–) 24 (ms).
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mentioned that a snap through type bending mode is exhibited near the center of the beam as the torsion angle
passes through zero and the stiffness of the beam increases in the stiff bending mode.

Fig. 14 and Tables 10 and 11 analyze the Bending II response using the deformed axial locations z ¼ 88mm
and z ¼ 127mm, respectively, for the centerline and the torsion angle. Each of these measurements yields
parametric frequencies very close to the excitation frequency o ¼ 35:0Hz that was used in the parametric
functions Eq. (5.3). From these figures it can be seen that there is very little torsion in this predominantly
bending mode. Also, it should be noted that for the response Bending II the axial force in the beam was so
large that it caused the extension bar to bend leading to displacements (in the e3 direction) of about 70.5mm
at the beam’s clamped end.
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Fig. 13. Response of Torsion III for the centerline (a, b, c) and the torsion angle (d, e). For the time responses (a, b, d, e, with N ¼ 3) the

deformed axial location is z ¼ 110mm. Also, the spatial shapes (c, with P ¼ 6) are presented for different times. The curve labels are: (a, d)

(–�–) Exp.; (—) Par.; (c) (–o–) 0 (ms); (–�–) 13 (ms); (–+–) 18 (ms).
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6. Measurement of the natural frequencies and damping

In order to calibrate a finite element model of this beam-mass system it is necessary to first match natural
frequencies and damping characteristics. The objective of this section is to provide measurements of these
quantities.

The first four natural frequencies and their associated damping coefficients for the orientation of gravity
with a ¼ 1 were measured by introducing a small perturbation that excited the particular mode of interest.
Since the deflections were small, the modes were reasonably uncoupled. Also, the laser sensor was used to
measure the associated velocities and the natural frequencies were determined by applying a Fourier transform
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Fig. 14. Response of Bending II for the centerline (a, b, c) and the torsion angle (d, e). For the time responses (a, b, d, e, with N ¼ 3) the

deformed axial location is z ¼ 88mm for the centerline and z ¼ 127mm for the torsion angle. Also, the spatial shapes (c, with P ¼ 5) are

presented for different times. The curve labels are: (a, d) (–�–) Exp.; (—) Par.; (c) (–}–) 0 (ms); (–o–) 7 (ms); (–�–) 14 (ms); (–+–) 21 (ms).
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to the signal. Fig. 15a shows the velocity and Fig. 15b shows the associated Fourier transform for the first
mode in the stiff bending plane. The frequency of this bending mode can easily be determined from the results
in Fig. 15b and the damping coefficients for each of the modes were determined using both the time- and
frequency-domain methods.

For the time-domain method, the damping was estimated by curve-fitting the decay rate of the envelope
(a Hilbert transform was applied to extract the envelop) and the results are shown in Fig. 15c. From
linear vibration theory it is known that the envelop in Fig. 15c should have the form

vðtÞ ¼ v0 expð�zotÞ, (7.1)
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Fig. 15. Analysis of the natural frequency and damping coefficient for the first mode in the stiff bending plane. The curve labels are:

(c) (—) Hilbert Transform; ( � � � � � ) Measured; (d) (—) Fitted Polynomial; ( � � � � � ) Envelope; (e) ( � � � � � ) FFT; (—) Fitted.
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where o is the natural frequency and z is the normalized damping coefficient. The value of z is determined by
fitting a straight line to the log plot of this envelope as is shown in Fig. 15d.

For the frequency domain method, a second-order Laplace transform function is fitted to the Fourier
transformed signal in a small range of frequencies that contains the desired mode. Fig. 15e shows the results of
this process for the range o ¼ 25�27Hz associated with the first mode in the stiff bending plane. The
advantage of this method is that it can be applied to isolate specified modal response even when a number of
modes are present. The results of these two methods produced nearly the same answers and the values of the
natural frequencies and damping coefficients are recorded in Table 12 for the first four modes of vibration.
The values of damping in Table 12 are near the value 0.17% recorded for steel in Ref. [9], except for the value
associated with the first bending mode in the weak bending plane which is much higher. This high value of
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Table 12

Measured natural frequencies and damping coefficients for the first four modes of vibration (a ¼ 1)

Mode type Frequency (Hz) z (%)

First bending mode (weak plane) 2.76 4.0

First bending mode (stiff plane) 26.75 0.187

Torsional mode 41.82 0.119

Second bending mode (weak plane) 44.03 0.05
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damping may be partially due to the flexibility of the extension bar attached to the motor shaft, the damping
in the bearings holding this extension bar and effects of the controller.

7. Conclusions

An experimental setup has been designed to investigate dynamic lateral torsional buckling of a beam-mass
system. Experiments have been performed and analyzed to present quantitative data in the form of time series
of the position of the centerline of the beam and the torsion angle at its end. Measurements have been made
using a laser sensor to determine the velocity of points on the mass and also using edge detection of high speed
video of the phenomena to determine the motion of the beam. The geometry and material properties of the
specimen as well as its natural frequencies and damping coefficients have also been measured.

It has been shown that this dynamic buckling phenomena can occur at different amplitudes and frequencies
of excitation (see Torsions I and III in Fig. 6 and the data for Torsion II). Moreover, it has been shown that
two different modes of response can occur at the same excitation amplitude and frequency (see Torsion I and
Bending II in Fig. 6).

Furthermore, the coefficients of parametric functions of time at different axial locations and polynomial
functions of space at different times have been presented for both the position of the beam’s centerline and the
torsion angle at the beam’s end. Such data can be used for future validation of analytical or numerical models.
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Appendix A. Equations of motion of the beam-mass system

The objective of this appendix is to derive the expressions Eq. (2.4) for the force fL and moment mL applied
to the end x3 ¼ L of an elastic beam. To this end, let f(x3) and m(x3) be the force and moment applied to the
cross-section of the beam at the axial position x3. Then, the equations of equilibrium of the beam become

�fð0Þ þ fðx3Þ ¼ 0; �mð0Þ þ ðx3e3 þ uÞ � fðx3Þ þmðx3Þ ¼ 0, (A.1)

where {�f(0), �m(0)} are the force and moment applied to the beam at its clamped end and u is the
displacement vector. Next, using the boundary conditions

fðLÞ ¼ fL; mðLÞ ¼ mL, (A.2)

it follows from Eq. (A.1) that

fð0Þ ¼ fL; mð0Þ ¼ ðLe3 þ uLÞ � fL þmL, (A.3)

where uL is the value of u at x3 ¼ L. Thus, the equilibrium Eq. (A.1) can be rewritten in the forms

fðx3Þ ¼ fL; mðx3Þ ¼ mL þ ½ðL� x3Þe3 þ ðuL � uÞ� � fL. (A.4)

Also, let fi and mi denote the components of f and m, respectively, relative to the fixed base based vectors ei.
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For the problem under consideration the axial component f3 of the force is assumed to be finite and all other
quantities are assumed to be infinitesimal. Thus, Eq. (A.4) yield

f 1ðx3Þ ¼ f 1L; f 2ðx3Þ ¼ f 2L; f 3ðx3Þ ¼ f 3L,

m1ðx3Þ ¼ m1L � ðL� x3Þf 2L þ ðu2L � u2Þf 3L,

m2ðx3Þ ¼ m2L þ ðL� x3Þf 1L � ðuL1 � u1Þf 3L,

m3ðx3Þ ¼ m3L, ðA:5Þ

where quadratic terms in small quantities have been neglected. Moreover, the influence of gravity g can be
taken into consideration by specifying f3L in the form

f 3L ¼ aMgþ EA
u3L

L
; A ¼ hw, (A.6)

where a is an auxiliary parameter introduced for convenience, M is the mass the block attached to the beam’s
end, and E is Young’s modulus of elasticity. Also, here u3L is the displacement from the stretched length
caused by gravity. Then, neglecting quadratic terms in the displacements, Eq. (A.5) can be further
approximated by

f 1ðx3Þ ¼ f 1L; f 2ðx3Þ ¼ f 2L; f 3ðx3Þ ¼ f 3L,

m1ðx3Þ ¼ m1L � ðL� x3Þf 2L þ ðu2L � u2ÞaMg;

m2ðx3Þ ¼ m2L þ ðL� x3Þf 1L � ðu1L � u1ÞaMg,

m3ðx3Þ ¼ m3L. ðA:7Þ

Next, taking into account the finite effect of gravity, the constitutive equations are given by

f 3ðx3Þ ¼ aMgþ EA
du3

dx3
,

m1ðx3Þ ¼ � EI22
d2u2

dx2
3

; I22 ¼
hw3

12
,

m2 ¼ EI11
d2u1

dx2
3

; I11 ¼
h3w

12
; m3 ¼ B3

dy3
dx3

, ðA:8Þ

where y3 is the torsion angle and the torsional stiffness B3 is taken from the exact solution [10]

B3 ¼
mh2b2

3
bðxÞ; x ¼

b

h
,

bðxÞ ¼
1

x
1�

192

p5x

X1
n¼1

1

ð2n� 1Þ5

� �
tanh

pð2n� 1Þx
2

� 	" #
ðA:9Þ

and where m is the shear modulus

m ¼
E

2ð1þ nÞ
, (A.10)

Next, substituting Eq. (A.7) into Eq. (A.8) and using Eq. (A.6) yields the differential equations

EI11
d2u1

dx2
3

� aMgu1 ¼ m2L � aMgu1L þ ðL� x3Þf 1L,

EI22
d2u2

dx2
3

� aMgu2 ¼ �m1L � aMgu2L þ ðL� x3Þf 2L,

du3

dx3
¼

u3L

L
;

dy3
dx3
¼

y3L

L
, ðA:11Þ
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which are solved subject to the boundary conditions

u1ð0Þ ¼ 0;
du1

dx3
ð0Þ ¼ 0; u2ð0Þ ¼ 0;

du2

dx3
ð0Þ ¼ 0; y3ð0Þ ¼ 0. (A.12)

Now, introducing the definitions

l21 ¼
Mg

EI11
; l22 ¼

Mg

EI22
, (A.13)

the solutions of Eq. (A.11) can be expressed in the forms
For a ¼ �1

u1 ¼ �
1

Mg
½m2L þMgu1L þ Lf 1L� cosðl1x3Þ þ

f 1L

Mgl1

� �
sinðl1x3Þ

þ
1

Mg
½m2L þMgu1L þ ðL� x3Þf 1L�,

u2 ¼ �
1

Mg
½�m1L þMgu2L þ Lf 2L� cosðl2x3Þ þ

f 2L

Mgl2

� �
sinðl2x3Þ

þ
1

Mg
½�m1L þMgu2L þ ðL� x3Þf 2L�, ðA:14Þ

For a ¼ 0,

u1 ¼
1

2EI11
½m2L�x

2
3 þ

1

6EI11
½ðL� x3Þ

3
� L3 þ 3L2x3�f 1L,

u2 ¼
1

2EI22
½m1L�x

2
3 þ

1

6EI22
½ðL� x3Þ

3
� L3 þ 3L2x3�f 2L, ðA:15Þ

For a ¼ 1,

u1 ¼
1

Mg
½m2L �Mgu1L þ Lf 1L� coshðl1x3Þ �

f 1L

Mgl1

� �
sinhðl1x3Þ

�
1

Mg
½m2L �Mgu1L þ ðL� x3Þf 1L�,

u2 ¼ �
1

Mg
½�m1L �Mgu2L þ Lf 2L� coshðl2x3Þ �

f 2L

Mgl2

� �
sinhðl2x3Þ

�
1

Mg
½�m1L �Mgu2L þ ðL� x3Þf 2L�, ðA:16Þ

together with the solutions

u3 ¼
u3L

L
x3; y3 ¼

y3L

L
x3. (A.17)

Moreover, the displacements {u1L, u2L} and the angles {y1L, y2L} at the end x3 ¼ L are determined by the
equations

u1L ¼ u1ðLÞ; u2L ¼ u2ðLÞ; y1L ¼ �
du2

dx3
ðLÞ; y2L ¼

du1

dx3
ðLÞ. (A.18)
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Then, substituting the solutions Eqs. (A.14)–(A.16) into Eq. (A.18) yields equations which can be solved to
obtain the expressions Eq. (2.4) where the stiffnesses Kij are given by

For a ¼ �1,

K11 ¼ �
Mgl1

Ll1 � 2 tan ðl1LÞ=2

 � ,

K44 ¼ �
Mgfsinðl1LÞ � Ll1 cosðl1LÞg

2l1 Ll1 � 2 tan ðl1LÞ=2

 �� 


sin ðl1LÞ=2

 �

cos ðl1LÞ=2

 � ,

K22 ¼ �
Mgl2

Ll2 � 2 tan ðl2LÞ=2

 � ,

K33 ¼
Mgfsinðl2LÞ � Ll2 cosðl2LÞg

2l2 Ll2 � 2 tan ðl2LÞ=2

 �� 


sin ðl2LÞ=2

 �

cos ðl2LÞ=2

 � ,

K14 ¼ K41 ¼
Mg tan ðl1LÞ=2


 �
Ll1 � 2 tan ðl1LÞ=2


 � ,
K23 ¼ K32 ¼ �

Mg tan ðl2LÞ=2

 �

Ll2 � 2 tan ðl2LÞ=2

 � , ðA:19Þ

For a ¼ 0,

K11 ¼
12EI11

L3
; K44 ¼

4EI11

L2
; K22 ¼

12EI22

L3
; K33 ¼

4EI22

L2
,

K14 ¼ K41 ¼ �
6EI11

L2
; K23 ¼ K32 ¼

6EI22

L2
, ðA:20Þ

For a ¼ 1,

K11 ¼
Mgl1

Ll1 � 2 tanh ðl1LÞ=2

 � ,

K44 ¼
Mgfsinhðl1LÞ � Ll1 coshðl1LÞg

2l1 Ll1 � 2 tanh ðl1LÞ=2

 �� 


sinh ðl1LÞ=2

 �

cosh ðl1LÞ=2

 � ,

K22 ¼
Mgl2

Ll2 � 2 tanh ðl2LÞ=2

 � ,

K33 ¼ �
Mgfsinhðl2LÞ � Ll2 þ coshðl2LÞg

2l2 Ll2 � 2 tanh ðl2LÞ=2

 �� 


sinh ðl2LÞ=2

 �

cosh ðl2LÞ=2

 � ,

K14 ¼ K41 ¼ �
Mg tanh ðl1LÞ=2


 �
Ll1 � 2 tanh ðl1LÞ=2


 � ; K23 ¼ K32 ¼
Mg tanhððl2LÞ=2Þ

Ll2 � 2 tanhððl2LÞ=2Þ
. ðA:21Þ
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